
Formation of clusters in the ground state of the t–J model on a two-leg ladder

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 8571

(http://iopscience.iop.org/0953-8984/16/47/010)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 19:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/47
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) 8571–8588 PII: S0953-8984(04)85978-2

Formation of clusters in the ground state of the t–J
model on a two-leg ladder

A Fledderjohann1, A Langari2,3,4 and K-H Mütter1

1 Physics Department, University of Wuppertal, 42097 Wuppertal, Germany
2 Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159, Iran
3 Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany

E-mail: langari@mpipks-dresden.mpg.de

Received 8 September 2004
Published 12 November 2004
Online at stacks.iop.org/JPhysCM/16/8571
doi:10.1088/0953-8984/16/47/010

Abstract
We investigate the ground state properties of the t–J model on a two-leg ladder
with anisotropic couplings (t, α = J/t) along rungs and (t ′, α′ = J ′/t ′) along
legs. We have implemented a cluster approach based on four-site plaquettes. In
the strong asymmetric cases α/α′ � 1 and α′/α � 1 the ground state energy
is well described by plaquette clusters with charges Q = 2, 4. The interaction
between the clusters favours the condensation of plaquettes with maximal
charge—a signal for phase separation. The dominance of Q = 2 plaquettes
explains the emergence of tightly bound hole pairs. We have presented the
numerical results from exact diagonalization to support our cluster approach.

1. Introduction: motivation and questions of interest

Since the discovery of high Tc superconductors [1]—almost twenty years ago—models of
strongly correlated electron systems doped with holes have attracted much interest. The t–J
model in two dimensions [2–9] and on ladders [10, 11] has been studied intensively in an effort
to understand the behaviour of mobile holes in an antiferromagnetic background. Although
some exact results in the special form of interactions exist [12, 13] the ground state and low
energy excitations on the t–J ladder are not known exactly.

The generic mechanisms which explain the most striking features are of special interest,
namely:

(i) the opening of a charge transfer gap [14],
(ii) the spatial separation of phases with hole rich and hole poor domains [15].
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Figure 1. Subdivision of a two-leg ladder.

Signatures of these features can be seen already in the ground state energy per site

ε(ρ) = EG

N
, ρ = Qtot

N
, (1)

where EG, N , Qtot are the ground state energy, the number of sites and the total charge,
respectively.

(i) A discontinuity in the first derivative, i.e. chemical potential,

µ(ρ) = dε

dρ
, (2)

µ(ρ) =
{
µ− ρ → ρ0 − 0

µ+ ρ → ρ0 + 0,
(3)

signals the opening of a gap.
The inverse function

ρ(µ) = ρ0 for µ− � µ � µ+, (4)

develops a plateau with a width

� = µ+ − µ−, (5)

which is related to the charge transfer gap. This is quite analogous to the plateaux in the
magnetization curve M = M(B), which are related to the spin gap.

(ii) A linear behaviour of ε(ρ) in some interval, ρ1 � ρ � ρ2:

εL(ρ) = 1

ρ2 − ρ1
[ε(ρ1)(ρ2 − ρ) + ε(ρ2)(ρ − ρ1)] , (6)

signals the spatial separation of two phases: the first one with charge densityρ1, the second
one with ρ2.
For demonstration, let us consider a two-leg ladder, which we divide into two parts with
sites N j , charges Q j , Hamiltonians H j , ground state wavefunctionsψ(ρ j, N j ) and ground
state energies ε(ρ j)N j (ρ) as illustrated in figure 1.
The Hamiltonian of the whole ladder

H = H1(N1(ρ)) + H2(N2(ρ)) + H12 (7)
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contains in addition an interaction term, which is mediated via the two (dashed) links
connecting the subladders. Each bond in figure 1 corresponds to the usual t–J
Hamiltonian, composing of an electron hopping term t (c†

i,σc j,σ +c†
j,σci,σ ) and an exchange

interaction J (Si · Sj − ni n j/4). The elimination of doubly occupied states has been also
imposed. The indices i, j refer to nearest neighbour sites, σ to electron spin and the
couplings on legs are defined as (t ′, J ′).
The product ansatz

ψ(ρ, N) = ψ(ρ1, N1(ρ))ψ(ρ2, N2(ρ)) (8)

describes a state with charge densityρ and two spatially separated phases, the first one with
charge density ρ1 and N1(ρ) sites and the second with charge density ρ2 and N2(ρ) sites.
If we estimate the expectation value of the Hamiltonian (7) with the variational ansatz (8),
we get an upper bound

ε(ρ) � εL(ρ) for ρ1 � ρ � ρ2, (9)

in terms of the right-hand side of (6).
Note that the interaction term

1

N
〈ψ(ρ)|H12|ψ(ρ)〉,

does not survive in the thermodynamical limit N → ∞. Since (9) is a strict upper bound
in the thermodynamical limit for any interval

ρ1 � ρ � ρ2,

we can conclude that ε(ρ) is a convex function of ρ. The product ansatz (8) with the two
separated phases represents the true ground state if the upper bound (9) holds sharply. In
this case, we derive from (6) a constant chemical potential:

µ = dε

dρ
= ε(ρ2)− ε(ρ1)

ρ2 − ρ1
= µ0 for ρ1 � ρ � ρ2, (10)

which corresponds to a discontinuity in the inverse function

ρ(µ) =
{
ρ1 for µ → µ0 + 0

ρ2 for µ → µ0 − 0.
(11)

It is the purpose of this paper to demonstrate that the generic mechanisms, which lead
to gaps and phase separations, are intimately related to the formation of clusters. On ladder
systems the formation of clusters is prescribed in a natural way by the ladder geometry.

It is plausible to start with the simplest clusters, defined by the rungs. In the limit of
vanishing hopping parameter t ′ along the legs, the system decouples into a product of rung
eigenstates. This limit has been studied intensively in the literature under various descriptions
such as the ‘local rung approximation’ [16] or ‘bond operator theory’ [17]. In [19], we studied
first-order corrections in the leg hopping parameter t ′ and compared perturbative results with
exact diagonalizations on a 2 × 8 ladder for parameter values

t = 1, α = J = 0.5,

t ′ = 0.1, 0.2, 0.3, α′ = J ′/t ′ = 2.7.
(12)

As regards the quality of the perturbation expansion based on the local rung approximation we
found

• good agreement in the regime 0 � ρ � 1/2,
• failure in the regime 1/2 � ρ � 1.
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Figure 2. Lanczos results for energies per site of an N = 2 × 8 t–J ladder for the
parameters (15a), (15b). For both cases shown, t ′ increases from top to bottom as t ′ =
0, 0.1, . . . , 1.0.

We do not think that higher orders in perturbation expansion with local rungs will improve
the situation in the second regime. Instead we are convinced that the starting point—i.e. the
clusters which define the zeroth-order perturbation theory—has to be changed.

In this paper we intend to demonstrate, on the two-leg ladder with anisotropic couplings,
how the appropriate clusters which define the zeroth-order perturbation theory are to be found.
We start in section 2 with an analysis of the exact ground state energy per site ε(ρ) on a 2 × 8
ladder (cf figures 2(a), (b)) which turns out to be almost linear in the charge density ρ for an
appropriate choice of the system parameters (equations (15a) and (15b)). As explained above,
the linearity in ρ indicates phase separation into two clusters with charge densities

ρ1 = 0 ρ2 = 1
2 for 0 � ρ � 1

2 , (13)

ρ1 = 1
2 ρ2 = 1 for 1

2 � ρ � 1. (14)

The dependence of the ground state energy per site (6) on the system parameters is very well
reproduced by the plaquette ground state energies E (p)(Q) with plaquette charges Q = 2, 4.

In section 3 we present the perturbation expansion based on plaquette clusters. First-
order corrections, which describe the interaction between neighbouring plaquettes, favour the
clustering of plaquettes with charges Q = 4—a first indication of phase separation.

In section 4 we investigate in which circumstances plaquette clusters with odd charges
Q = 1 and 3 are suppressed energetically.

In the low doping case ρ > 3/4 the dominance of Q = 2 and suppression of Q = 3
plaquettes in the ground state explains the emergence of tightly bound hole pairs [18] for an
appropriate choice of the rung and leg couplings. Finally, a discussion on our results will be
presented.

2. Approximate linear charge density dependence of the ground state energy

We start in figures 2(a), (b) with Lanczos results on the ground state energy per site in the t–J
model with anisotropic couplings t, α = J/t (throughout this paper we have chosen t ≡ 1),
t ′, α′ = J ′/t ′ for the rungs and legs respectively on a 2 × 8 ladder:

α = 0.5, α′ = 4.0, t ′ = 0, 0.1, . . . , 1.0, (15a)

α = 4.0, α′ = 0.5, t ′ = 0, 0.1, . . . , 1.0. (15b)
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There is a pronounced difference between the dependences on ρ of the ground state
energies in figures 2(a) and (b). In figure 2(a) we observe a discontinuity in the slope
µ(ρ) = dε/dρ at ρ = 1/2, which generates a plateau in the charge density ρ(µ) as function
of the chemical potential:

ρ(µ) = 1
2 µ− � µ � µ+. (16)

The plateau width

� = µ+ − µ− (17)

shrinks with increasing values of t ′. Note also that the chemical potential µ(ρ) = dε/dρ
vanishes for ρ > 1/2 for a specific value of t ′ = t ′

0(α, α
′). This feature will be discussed in

section 4.
Let us next turn to the ground state energy ε(ρ) in the domain (15b) shown in figure 2(b).

At t ′ = 0, there is no discontinuity in the slope—i.e. no plateau in ρ(µ)—at ρ = 1/2. The
variation with the leg hopping parameter t ′ is much smaller than in case (a). For t ′ > 0,
ε(ρ, t ′) is only approximately linear in the two subintervals 0 � ρ � 1/2 and 1/2 � ρ � 1
with different slopes µ− and µ+. The difference� = µ+ − µ− increases with t ′. Deviations
from linearity are convex as predicted by (9).

The product ansatz (8) describes a system with two phases:
For 0 � ρ � 1/2 with a ground state energy

ε(ρ, t ′) = ε(0, t ′)(1 − 2ρ) + ε(1/2, t ′)2ρ (18)

there is a phase with charge densityρ1 = 0 in the first part of the ladder and a second phase with
charge density ρ2 = 1/2 in the second part. Phase separation occurs at N1(ρ) = (1 − 2ρ)N .

For 1/2 � ρ � 1 with a ground state energy

ε(ρ, t ′) = 2ε(1/2, t ′)(1 − ρ) + ε(1, t ′)(2ρ − 1) (19)

the two phases in the first and second part of the ladder have charge densities ρ1 = 1/2 and
ρ2 = 1, respectively. Here the phase separation occurs at N1(ρ) = 2(1 − ρ)N .

For 0 � ρ � 1/2 the dependence of ε(ρ, t ′) (18) on the parameters t ′, α, α′ only enters
via ε(1/2, t ′, α, α′). Results on a 2×8 ladder are shown for this quantity in figures 3(a) and (b)
with the parameter choices

α = 0.4, 0.5, 0.6, α′ = 4.0, 5.0, 6.0, t ′ = 0, 0.1, . . . , 1.0, (20a)

α = 4.0, 5.0, 6.0, α′ = 0.4, 0.5, 0.6, t ′ = 0, 0.1, . . . , 1.0. (20b)

It turns out that the whole dependence on the parameters t ′, α, α′:

ε(1/2, t ′, α, α′) = 1
4 E (p)(2, t ′, α, α′) f (1/2, t ′, α, α′), (21)

is correctly reproduced by the (2 × 2) plaquette ground state energies E (p)(Q, t ′, α, α′) with
charge Q = 2 up to a correction factor f (1/2, t ′, α, α′). The physical interpretation of f is
given below.

As is shown in appendix A (cf (A.13)–(A.18)), we have different ground states in the
regimes (20a) and (20b) for plaquettes with charge Q = 2. The ground state energies follow
from the lowest eigenvalues of the 3 × 3 matrix (A.9), which are computed in a perturbation
expansion with zeroth-order contributions (A.15) and (A.18) for the regimes (20a) and (20b):

E (P)
(a) (2, t ′, α, α′) = − 1

2

(
J ′ +

√
J ′2 + 16

)
, (22a)

E (P)
(b) (2, t ′, α, α′) = − 1

2

(
α +

√
α2 + 16t ′2

)
. (22b)
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Figure 3. The correction factor f (1/2, t ′, α, α′) of (21) for a 2 × 8 t–J ladder with
parameters (20a), (20b) and ρ = 1/2.

In figures 3(a) and (b) we have plotted the correction factors in (21):

f(a)(1/2, t ′, α, α′) = f(a)(1/2, J ′ = α′t ′), (23a)

f(b)(1/2, t ′, α, α′) = f(b)(1/2, t ′/(α − 1.4α′)). (23b)

versus the ‘scaling variables’ J ′ = α′t ′ and t ′/(α − 1.4α′), respectively. Note, that all data
points for (20a) and (20b) almost coincide if we use the scaling variables.

Let us next discuss the linear behaviour with ρ in (19). The dependence on the parameters
t ′, α, α′ enters via ε(1/2, t ′, α, α′) ((21), (22a), (22b)) and ε(1, J = α, J ′ = α′t ′). Note that
for ρ = 1, ε(1, J, J ′) is just the ground state energy per site of the spin 1/2 Heisenberg model
on a two-leg ladder with spin couplings J and J ′ along the rungs and legs, respectively5. The
J, J ′ dependence

ε(1, J, J ′) = 1
4 E (p)(4, J, J ′) f (1, J ′/J ), (24)

is correctly reproduced by the plaquette ground state energy E (p)(Q, J, J ′)with charge Q = 4
(cf (A.28)):

E (p)(Q = 4, J, J ′) = −J − J ′ −
√

J 2 + J ′2 − J J ′, (25)

up to a correction factor f (1, J ′/J ), which is shown in figures 4(a), (b) and which scales in
J ′/J .

3. Plaquette clusters in the ground state of the t–J model on a two-leg ladder

The results of the numerical analysis in the last section motivate us to build up the ground state
on the two-leg ladder from plaquette eigenstates.

For this purpose the t–J Hamiltonian

H = t
N/4∑
j=1

h j, j(t
′, α′, α) + t ′′

N/4−1∑
j=1

h j, j+1(α
′′) (26)

5 Note that at ρ = 1 the Heisenberg and t–J Hamiltonians are differing by a constant diagonal contribution (−1/4)
per bond.
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Figure 4. The correction factor f (1, t ′, α, α′) of (24) for a 2 × 8 t–J ladder with
parameters (20a), (20a) and ρ = 1.
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Q Q Qj=1 j=2 j=N/4

Figure 5. Decomposition of the two-leg t– J ladder into coupled (t ′′ , α′′) four-site plaquette clusters.

is decomposed into N/4 plaquette Hamiltonians (using the notation of [19])

h j, j(t
′, α′, α) = t ′

t
[h(4 j − 3, 4 j − 1, α′) + h(4 j − 2, 4 j, α′)]

+ [h(4 j − 3, 4 j − 2, α) + h(4 j − 1, 4 j, α)] , (27)

with spin couplings J = tα, J ′ = t ′α′ and hopping terms t, t ′ along the rungs and legs,
respectively (cf figure 5).

h j, j+1(α
′′) = h(4 j − 1, 4 j + 1, α′′) + h(4 j, 4 j + 2, α′′) (28)

describes the interaction between neighbouring plaquettes j, j + 1. This interaction is treated
in the following in a perturbative expansion around t ′′ = 0, J ′′ = 0, α′ = α′′ = J ′′/t ′′ fixed. In
the analysis of the numerical results for the ground state energies (21) and (24) at ρ = 1/2 and
ρ = 1, this interaction generates the correction factors f (ρ = 1/2) and f (ρ = 1)—shown in
figures 3(a), (b) and 4(a), (b) respectively.

The lowest plaquette eigenstates

h j, j (t
′, α′, α)ψ(p)n j

(Q j ) = E (p)
n j
(Q j)ψ

(p)
n j
(Q j ), (29)

in the sector with charge Q j = 0, 2, 4, Q j = 1, 3 and total plaquette spin 0 and 1/2,
respectively, are discussed in appendix A. The eigenstatesψ(p)n j =0(Q j ) = ψ(p)(Q j)with lowest

energy E (p)
n j =0(Q j ) = E (p)(Q j ) yield the basis for the ground state on the two-leg ladder in

lowest order perturbation theory t ′′ = 0.
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To zeroth order in t ′′ (t ′′ = 0) the eigenstates of the Hamiltonian (26) are given by a
product of plaquette ground states ψ(p)(Q j )

N/4∏
j=1

ψ(p)(Q j ), (30)

with energies

En =
N/4∑
j=1

E (p)(Q j ). (31)

The plaquette charges Q j have to add up to the total charge:

Qtot =
∑

j

Q j . (32)

Our analysis in section 2 suggests that only plaquette ground states with charges Q = 0, 2, 4:

ψ(p)(0), ψ(p)(2) for 0 � ρ � 1/2, (33)

ψ(p)(2), ψ(p)(4) for 1/2 � ρ � 1, (34)

are involved in the construction of the ground state of the two-leg ladder. The corresponding
ground state energies on the ladder:

E(ρ, t ′, α′, α, t ′′ = 0) = N (i)(i)E (p)
0 (Q = i) + N (i)(i + 2)E (p)

0 (Q = i + 2), (35)

i = 0 for 0 � ρ � 1/2,

i = 2 for 1/2 � ρ � 1,

are obtained from plaquette ground state energies E (p)(Q) and the number N (i)(Q) of
plaquettes with charge Q:

N (0)(0) + N (0)(2) = N (2)(2) + N (2)(4) = N/4, (36)

2N (0)(2) = 2N (2)(2) + 4N (2)(4) = Qtot. (37)

So far we have only treated the zeroth-order perturbation theory (26) (t ′′ = 0). The product
states are degenerate since the N (i)(Q) plaquettes with charges Q = 0, Q = 2 for i = 0 and
Q = 2, Q = 4 for i = 2 can be distributed in different ways over the ladder (figure 5).

The interaction energy W (Q j , Q j+1) between neighbouring plaquettes is derived in
appendix B in the framework of a first-order perturbation theory in the hopping parameter
t ′′. The resulting shift �E in the ground state energy:

�E (0) = N (0)(2, 2)W (2, 2) for i = 0, 0 � ρ � 1/2; (38)

�E (2) = N (2)(2, 2)W (2, 2) + N (2)(2, 4)W (2, 4) + N (2)(4, 4)W (4, 4)

for i = 2, 1/2 � ρ � 1 (39)

can be expressed in terms of the interaction energies W (Q j , Q j+1) and numbers N(Q j , Q j+1)

of neighbouring plaquettes with charges Q j , Q j+1. Since W (0, 0) = W (0, 2) = 0 and
W (2, 2) = −J ′/8 (B.7),�E (0) is minimal if N (0)(2, 2) is maximal:

N (0)(2, 2) = N (0)(2)− 1 = N

2
ρ − 1, (40)

According to (B.7),

W (2, 2) + W (4, 4)− 2W (2, 4) < 0. (41)
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Table 1. Results for J ′(J ) and ε(ρ, J ′ = J ′(J )) for rung spin exchange couplings J = α =
0.4, 0.5, 0.6 on the basis of (46) and (49).

J = α 0.4 0.5 0.6
J ′ = J ′(J ) 0.948 95 0.888 39 0.812 55
ε(ρ, J ′(J )) −0.662 15 −0.650 99 −0.637 17

�E (2) is minimal if N (2)(4, 4) (and thereby N (2)(2, 2)) are maximal:

N (2)(4, 4) = N (2)(4)− 1 = N

2
(ρ − 1/2)− 1, (42)

N (2)(2, 2) = N (2)(2)− 1 = N

2
(1 − ρ)− 1, (43)

N (2)(2, 4) = 1. (44)

The perturbative result on the ground state energy per site in the regime (20a)

ε(ρ) = (1 − ρ) 1
2 (E

(p)(2) + W (2, 2)) + 1
2 (ρ − 1/2)(E (p)(4) + W (4, 4)), (45)

predicts a level crossing in all charge sectors with 1/2 < ρ < 1 if

E (p)(4)− E (p)(2) + W (4, 4)− W (2, 2) = 0. (46)

In the regime (20a) the left-hand side with (25), (22a) and

W (4, 4)− W (2, 2) = − 3
8 J ′ (47)

only depends on J, J ′. The solution defines a curve J ′ = J ′(J ) in the parameter space, where
the ground state energy (45) becomes independent of ρ; the corresponding chemical potential

µ = dε

dρ
= 0 for 1/2 � ρ � 1 and J ′ = J ′(J ), (48)

turns out to be zero here.
Moreover, the ground state energy along the curve J ′(J ) is predicted to be

ε(ρ, J ′ = J ′(J )) = 1

4
E (p)

0 (2)− J ′

32
. (49)

Results for J ′(J ) and ε(ρ, J ′ = J ′(J )) are given in table 1.
As an illustration, we present in figure 6 the ground state energy per site ε(ρ, t ′, α′) =

E(N, Q, t ′, α′, α = 1/2)/N for the charges Q = 8, 10, . . . , 16 at α = 0.5, α′ = 4.0 (a) and
α′ = 2.7 (b).

The crossing of these energy levels at

t ′
0 = J ′(J = 0.5)

α′ =
{

0.222 for α′ = 4.0

0.329 for α′ = 2.7,
(50)

is predicted to change with α′ if we keep α = J = 0.5 fixed. On the other hand, the
corresponding ground state energy per site

ε(ρ, J ′(J = 0.5)) = −0.650 99, (51)

is independent of α′!
Both predictions (50) and (51) are clearly visible in the numerical results on a 2×8 ladder.
We also looked for level crossings (46) in the regime (20b). It turns out that they occur at

t ′ values t ′′ = t ′ > 1, where the perturbative approach is not reliable.
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Figure 6. Lanczos results for the crossing of energy levels for ρ = Q/N � 1/2 and α = 0.5,
α′ = 4.0 (a), α′ = 2.7 (b) for an N = 2 × 8 t–J ladder.

4. The special role of plaquette clusters with charges Q = 2 and 4

The variational ansatz (30) with plaquette clusters only involves cluster eigenstates (33), (34)
with even charges Q = 0, 2, 4. Such an ansatz makes sense if plaquette clusters with odd
charges are suppressed energetically:

�1 = E (p)(0) + E (p)(2)− 2E (p)(1) < 0, (52)

�3 = E (p)(2) + E (p)(4)− 2E (p)(3) < 0. (53)

In appendix A we discuss the low lying eigenstates of plaquette clusters with charges
Q = 0, 1, 2, 3, 4. The ground state energies for Q = 0, 1, 4 are unique in the sense that
there are no level crossings by variation of the parameters t ′, α′, α. The ground state energy
of the Q = 2 cluster is given by (22a) and (22b).

It turns out that the inequalities (52) and (53) are indeed satisfied in the regimes (15a)
and (15b), respectively.

The suppression of Q = 3 plaquettes in the regime (53) has immediate consequences for
the mobility and correlations of holes as they are discussed by Siller et al [18] for the low
doping case (ρ > 3/4). In the regime�3 < 0, hole pairs are confined in Q = 2 plaquettes and
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Figure 7. Energy differences�3 (α, α
′) for (1)α′ = 0.35 and (2)α = α′ (in both cases, t = t ′ = 1).

cannot move in the antiferromagnetic background of the Q = 4 plaquettes. This can be seen
in the first-order perturbation theory (cf appendix B) for the interaction between neighbouring
plaquettes, which forbids the transition

Q j = 2 Q j+1 = 4 → Q′
j = 4 Q′

j+1 = 2, (54)

with charge transfer �Q = 2. Therefore the hopping of the hole pair confined in the Q = 2
plaquette is suppressed in the antiferromagnetic background.

On the other hand, hopping of a single hole contained in a plaquette with Q = 3 is possible
since the transition

Q j = 3 Q j+1 = 4 → Q′
j = 4 Q′

j+1 = 3 (55)

is not forbidden.
It is interesting to study the energy difference�3(α, α

′) for the α, α′ values of [18]. There
the leg coupling α′ = J ′/t ′ has been chosen to be α′ = 0.35 whereas the rung coupling varies:
α � α′ = 0.35. The hopping parameters are equal: t = t ′. For large α > 4 this corresponds
to our regime (20b).

In figure 7 we have plotted the difference �3(α, α
′ = 0.35). For comparison we have

also included the difference�3(α = α′) with symmetric couplings along the rungs and legs,
respectively. The latter drops monotonically with α = α′ and is zero at

α = α′ = 2√
21

= 0.436 . . . . (56)

In contrast, the difference �3(α, α
′ = 0.35) in the asymmetric case α > α′ = 0.35 first

increases and has a flat maximum at α 	 0.43 and then drops, with a zero at

�3(α 	 0.985, α′ = 0.35) = 0. (57)

The zeros (56) and (57) of �3 mark the transition where Q = 3 plaquettes are replaced by
Q = 2 plaquettes and two holes combine to a pair. We expect that the hole–hole correlation
length has a maximum at this transition point. Indeed there is a maximum of the hole–hole
correlation length at α = 1.2, as determined in [18] from a DMRG calculation on a 40 × 2
ladder. It might be accidental that the valueα = 1.2 is quoted as well as a lower bound for phase
separation in the 2D t–J model with isotropic couplings [5]. We therefore calculated (53) also
for the isotropic case α = α′, where the zero (56) is formed quite far below α = 1.2.
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It would be interesting to see whether the maximum of the correlation length is shifted
also to a smaller value in the symmetric case α = α′.

We are aware of the fact that our considerations in the low doping regime (ρ > 3/4) are
based on the product ansatz (30) with plaquette clusters with charges

Q = 2, 4 for �3 < 0, (58)

Q = 3, 4 for �3 > 0. (59)

The interaction between neighbouring plaquettes is neglected. This is justified for (58) if
�3 is sufficiently negative, as was demonstrated in sections 2 and 3. On the other hand,
these interactions cannot be neglected in the regime (59) where first-order perturbation theory
allows the hopping (55) of Q = 3 plaquettes in the antiferromagnetic background of Q = 4
plaquettes. In this case, first-order perturbation theory leads to an effective Hamiltonian on a
chain with nearest neighbour couplings. The effective degrees of freedom at each site and their
nearest neighbour interactions are defined by the ground states of the Q = 3 and 4 plaquettes.
We expect that such an effective Hamiltonian will induce a convex curvature in the dependence
on ρ of the ground state energy, which would indicate that we are beyond the phase separated
phase. We observed this curvature (for 0 < ρ < 1/2) with an effective Hamiltonian based on
rung clusters and their interactions [19].

5. Discussion and perspectives

The formation of clusters in the ground state of a quasi-one-dimensional system has important
consequences for its physical properties, e.g. the phase diagram at zero temperature.

In case of the t–J model on a two-leg ladder with asymmetric couplings (α = J/t, α′ =
J ′/t ′; regime (20a)α/α′ � 1 and regime (20b)α/α′ 
 1) plaquette clusters with even charges
Q = 0, 2, 4 play the dominant role and explain the charge density and (α, α′, t ′) dependence
of the ground state energies, as was demonstrated in sections 3 and 4. First-order perturbation
theory for the interaction of neighbouring plaquettes favours the condensation of plaquettes
with the same charge (Q = 2, 4), which can be interpreted as a signal for phase separation. Of
course, this can happen only if plaquette clusters with odd charges Q = 1, 3 are suppressed
energetically, which means that the energy combinations (52) and (53) are sufficiently negative.

The low doping regime (ρ � 3/4) is of special interest. It has been demonstrated in [18]
that the hole–hole correlations are small in the t–J model with asymmetric couplings on legs
(α′ = 0.35) and rungs (α > 4). In this regime the ground state is very well described with
plaquette clusters of charge Q = 2, 4. The Q = 4 plaquettes generate the antiferromagnetic
background. In each Q = 2 plaquette a pair of holes is confined. The holes can be
deconfined only if the resulting two plaquettes with charge Q = 3 are energetically preferred
(cf (53) for �3 > 0). As was demonstrated in section 4 this happens for smaller α values
(α′ = 0.35 < α < 0.98 in the asymmetric case, α = α′ < 2/

√
21 in the symmetric case). In

this regime the ground state is more complex [18] and can be modelled by ‘hard core bosons’.
In our approach based on a product ansatz with clusters we have two possibilities for

exploiting the ground state in this regime: (A) We compute the effective Hamiltonian which
describes the interaction between Q = 3 and 4 plaquettes perturbatively. (B) We improve
the quality of the product ansatz with larger clusters such that hole–hole correlations at larger
distances are properly taken into account as well.
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t,α t,α
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Figure A.1. The notation and shape of the four-site cluster used—the building block for the two-leg
t–J ladder.

Appendix A. Eigenstates of the four-site cluster

The Hamiltonian of the four-site cluster (cf figure A.1) is defined in (26) (for j = 1).
We are now going to construct all Nc(Q) eigenstates for cluster charges Q = Q1 =

0, 1, 2, 3, 4—assuming equal numbers of spin-up (+) and spin-down (−) charges for even Q
and an excess of one spin-up particle for odd cluster charges Q. Moreover, we will assume
t, J, t ′, J ′ � 0.

The difference in coupling parameters for rungs (t, J ) and legs (t ′, J ′) subdivides the basis
states for each Q into the classes {|III〉} and {|I〉, |II〉}:

|III〉:

Q = 1 Q = 2 Q = 3 Q = 4∣∣∣∣ 0 0
+ 0

〉
,

∣∣∣∣ 0 −
+ 0

〉
,

∣∣∣∣ + 0
− +

〉
,

∣∣∣∣ − +
+ −

〉
,∣∣∣∣ + 0

0 0

〉
,

∣∣∣∣ + 0
0 −

〉
,

∣∣∣∣ − +
+ 0

〉
,

∣∣∣∣ + −
− +

〉
,

(A.1)

and6

|I〉:

∣∣∣∣ − 0
+ 0

〉
,

∣∣∣∣ − 0
+ +

〉
,

∣∣∣∣ − −
+ +

〉
,∣∣∣∣ + 0

− 0

〉
,

∣∣∣∣ + +
− 0

〉
,

(A.2)

|II〉:

∣∣∣∣ 0 0
+ −

〉
,

∣∣∣∣ + 0
+ −

〉
,

∣∣∣∣ + −
+ −

〉
,∣∣∣∣ 0 0

− +

〉
,

∣∣∣∣ + −
+ 0

〉
,

(A.3)

as regards the behaviour with respect to transformations

R̂: (1, 2, 3, 4) −→ (1, 3, 2, 4), (A.4)

i.e. the interchange of legs and rungs.

(a) Q = 0, Nc(0) = 1

E (p)(Q = 0) = 0. (A.5)

(b) Q = 1, Nc(1) = 4
We introduce |n〉 as the Q = 1 basis state with the spin-up particle (+) at plaquette position
n (|n〉 ≡ c+

n↑|0〉).
6 Note that each state shown represents two elements due to successive rotations by π—except for the Q = 4 states
in (A.1).
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Using the basis

|1, τ, ζ 〉 = 1
2 [(|1〉 + τ |4〉) + ζ(|2〉 + τ |3〉)] (A.6)

with τ = ±1, ζ = ±1, we obtain the eigenvalues

E (p)(Q = 1, τ, ζ ) = −ζ(t + τ t ′). (A.7)

(c) Q = 2, Nc(2) = 12
Introducing |m, n〉 as the Q = 2 basis state with spin-up particles (+) at site m and (−) at
position n (|m, n〉 ≡ c+

m↑c+
n↓|0〉), we first compute the action of the t–J Hamiltonian on

the singlet (τ = 1) and triplet states (τ = −1):

|1, (τ, ζ )〉 = [|1, 2〉 + τ |2, 1〉 + ζ (|3, 4〉 + τ |4, 3〉)]/2,
|2, (τ, ζ )〉 = [|2, 4〉 + τ |4, 2〉 + ζ (|1, 3〉 + τ |3, 1〉)]/2,
|3, (τ, ζ )〉 = [|1, 4〉 + τ |4, 1〉 + ζ (|3, 2〉 + τ |2, 3〉)]/2.

(A.8)

In this basis the action of the t–J Hamiltonian results in a 3 × 3 matrix for the singlet
(τ = 1) sector: ( −J 0 −(1 + ζ )t ′

0 −J ′ −(1 + ζ )t
−(1 + ζ )t ′ −(1 + ζ )t 0

)
. (A.9)

The ground state energy E in the singlet sector (τ = 1 with ζ = 1) is found from the
solution of the third-order equation

− (J + E)(J ′ + E)E + 4(E + J )t2 + 4(E + J ′)t ′2 = 0, (A.10)

which can be easily solved in the symmetric case t ′ = t , J ′ = J :

E = − 1
2

(
J +

√
J 2 + 32t2

)
. (A.11)

In the asymmetric case (20a) with α = J/t � α′ = J ′/t ′ one can derive an iterative
solution treating the term

− (J ′ + E)E + 4t2 = −4
E + J ′

E + J
t ′2 (A.12)

on the right-hand side of (A.12) as a perturbation. The resulting ground state energy in
first order of this perturbation reads

E (p)
0 = E (p)

a +�Ea (A.13)

�Ea = −4
E (p)

a + J ′

E (p)
a + J

t ′2
√

J ′2 + 16t2
(A.14)

where

E (p)
a = − 1

2

(
J ′ +

√
J ′2 + 16t2

)
. (A.15)

For example, for J = 0.5, J ′ = 4, t ′ = 1 the correction term (A.14) yields a 3%
contribution to the ground state energy E , such that the zeroth-order E (p)

a is already a very
good approximation.
In the regime (20b) with α′ = J ′/t ′ � α = J/t we derive from (A.10) a corresponding
ground state energy in a first-order perturbation:

E (p)
0 = E (p)

b +�Eb (A.16)

�Eb = −4
E (p)

b + J

E (p)
b + J ′

t2

√
J 2 + 16t ′2 (A.17)
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where

E (p)
b = − 1

2

(
J +

√
J 2 + 16t ′2

)
. (A.18)

Let us now turn to the triplet sectors (τ = −1). Here the six eigenstates and corresponding
eigenvalues turn out to be

|1, (−1,−1)〉 E = 0

|2, (−1,−1)〉 E = 0
1√
2
(|1, (−1, 1)〉 ∓ |3, (−1, 1)〉) E = ±2t ′

1√
2
(|2, (−1, 1)〉 ∓ |3, (−1,−1)〉) E = ±2t .

(d) Q = 3, Nc(3) = 12
We introduce |m, n〉 as Q = 3 basis state with the hole (0) at plaquette position m and
spin-down electron (−) at position n. The creation operators of the two spin-up electrons
(+) and that of the spin-down electron (−) are ordered according to the increasing site
number (cf figure A.1). For example, |1, 3〉 ≡ c+

2↑c+
3↓c+

4↑|0〉.
In the basis

|1, τ, ζ 〉 = [(|4, 2〉 + τ |1, 3〉) + ζ(|3, 1〉 + τ |2, 4〉)]/2,
|2, τ, ζ 〉 = [(|4, 3〉 + τ |1, 2〉) + ζ(|3, 4〉 + τ |2, 1〉)]/2,
|3, τ, ζ 〉 = [(|4, 1〉 + τ |1, 4〉) + ζ(|3, 2〉 + τ |2, 3〉)]/2,

(A.19)

the t–J Hamiltonian reduces to the following 3 × 3 matrix for the eigenvalues with
x = J/2, x ′ = J ′/2:(

ζ τ t ′ − x 0 −ζ t + x
0 −ζ t − x ′ ζ τ t ′ + x ′

−ζ t + x ζ τ t ′ + x ′ −x − x ′

)
. (A.20)

The eigenvalues are given by

E (p)(τ, ζ ) = −(x + x ′)±
√

A(τ ) + ζ B(τ ), ζ(τ t ′ − t), (A.21)

with

A(τ ) = (x2 − xx ′ + x ′2) + (t2 + τ t t ′ + t ′2),
B(τ ) = −(2t + τ t ′)x + (2τ t ′ + t)x ′.

(A.22)

The four eigenstates corresponding to the eigenvalues ζ(τ t ′ − t) which are independent
of the spin couplings J, J ′ have maximal total spin S = 3/2. The remaining ones have
total spin S = 1/2.
For the choices (15a), (15b) of plaquette parameters (t, J, t ′, J ′) the ground state is given
by one of the J, J ′-dependent (τ = 1) states with energy

E (p)(τ = 1, ζ ) = −
(

x + x ′ +
√

A(1) + ζ B(1)
)
. (A.23)

The ground state in the symmetric case t ′ = t , J ′ = J ,

E (p)(τ, ζ = ±1) = −J −
√(

J

2

)2

+ 3, (A.24)

is twofold degenerate with respect to the quantum number ζ = ±1. This degeneracy is
lifted in the asymmetric case (A.23) if the term B(1) (A.22) is nonvanishing.
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(e) Q = 4, Nc(4) = 6
We introduce |m, n〉 as the Q = 4 basis state with the two spin-up particles (+) at plaquette
positions m and n. Again, we use the definition that all creation operators of the four
electrons 2(+), 2(−) act in order of increasing site number (cf figure A.1) on the vacuum
|0〉 (e.g. |1, 3〉 ≡ c+

1↑c+
2↓c+

3↑c+
4↓|0〉).

In the basis

|1, τ 〉 = 1√
2
(|1, 3〉 + τ |2, 4〉)

|2, τ 〉 = 1√
2
(|1, 2〉 + τ |3, 4〉) (A.25)

|3, τ 〉 = 1√
2
(|1, 4〉 + τ |2, 3〉)

the t–J Hamiltonian reduces to the matrix( −J 0 �τ J
0 −J ′ �τ J ′

�τ J �τ J ′ −(J + J ′)

)
. (A.26)

with �τ = (1 + τ )/2 = 1, 0.
The eigenvalues for τ = −1 are simply given by

E (p)(Q = 4,−) = −J,−J ′,−(J + J ′), (A.27)

whereas the case τ = 1 yields

E (p)(Q = 4,+) = −(J + J ′)±
√

J 2 + J ′2 − J J ′, 0. (A.28)

The ground state for all parameter values is uniquely given in the τ = 1 sector.

Appendix B. First-order perturbation theory

To see the effects of first-order perturbation theory in the hopping parameter t ′′, we start from
the transition matrix elements:

t ′′
〈

N/4∏
j=1

ψ
(p)
0 (Q′

j )

∣∣∣∣∣
N/4∑
j=1

h j, j+1(α
′)

∣∣∣∣∣
N/4∏
j=1

ψ
(p)
0 (Q j )

〉

= t ′′
N/4∑
j=1

A j, j+1
〈
ψ
(p)
0 (Q′

j )ψ
(p)
0 (Q′

j+1)
∣∣h j, j+1(α

′)
∣∣ψ(p)0 (Q j )ψ

(p)
0 (Q j+1)

〉
(B.1)

with

A j, j+1 =
∏

l �= j, j+1

δQ′
l Ql . (B.2)

The interaction Hamiltonian h j, j+1(α
′) between neighbouring plaquettes is illustrated in

figure B.1. The hopping part h(t)j, j+1 is active if the two links 〈xx ′〉〈yy ′〉 are occupied by one
electron and one hole, respectively. This means, in terms of occupation numbers n(x), n(x ′)
on the sites x, x ′, n(x) = 1, n(x ′) = 0 or n(x) = 0, n(x ′) = 1. Therefore, the hopping term
induces a charge exchange by one unit

h(t)j, j+1: (Q j , Q j+1) → (Q j − 1, Q j+1 + 1), (Q j + 1, Q j+1 − 1) (B.3)
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j j+1

x x′

y y′

Figure B.1. Leg couplings (x, x ′), (y, y′) linking the neighbouring plaquettes j and j + 1 on the
ladder.

between neighbouring plaquettes. Note, in particular, that charge exchange by two and more
units like in (54) is forbidden in first-order perturbation theory.

Therefore the nonvanishing matrix elements〈
ψ
(p)
0 (Q′

j )ψ
(p)
0 (Q′

j+1)
∣∣h j, j+1(α

′)
∣∣ψ(p)0 (Q j)ψ

(p)
0 (Q j+1)

〉 = W (Q j , Q j+1)δQ′
j ,Q j δQ′

j +1,Q j +1 (B.4)

are necessarily diagonal for the pairs of interest:

(Q j , Q j+1) = (0, 2), (0, 4), (2, 4), (0, 0), (2, 2), (4, 4). (B.5)

They arise from the spin exchange part h(J )j, j+1 which is active if both sites x, x ′ (cf figure B.1)
are occupied with one electron:

h(J )j, j+1 = (
2S(x)S(x ′) + 1

2

)
n(x)n(x ′). (B.6)

Here S(x) and S(x ′) are spin operators at sites x and x ′ and we get for the interaction energies
W (Q j , Q j+1) for plaquette pairs (B.5)

W (Q j , Q j+1) = −t ′′α′ Q j Q j+1

32
(B.7)

if Q j and Q j+1 come from equation (B.5).
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